Radio-Frequency (rf) Confinement in Ion Mobility Spectrometry: Apparent Mobilities and Effective Temperatures
Samuel J. Allen, Matthew F. Bush
J. Am. Soc. Mass Spectrom. 2016, DOI: 10.1007/s13361-016-1479-9. (Link)
Ion mobility is a powerful tool for separating and characterizing the structures of ions. Here, a radio-frequency (rf) confining drift cell is used to evaluate the drift times of ions over a broad range of drift field strengths (E/P, V cm–1 Torr–1). The presence of rf potentials radially confines ions and results in excellent ion transmission at low E/P (less than 1 V cm–1 Torr–1), thereby reducing the dependence of ion transmission on the applied drift voltage. Non-linear responses between drift time and reciprocal drift voltages are observed for extremely low E/P and high rf amplitudes. Under these conditions, pseudopotential wells generated by the rf potentials dampen the mobility of ions. The effective potential approximation is used to characterize this mobility dampening behavior, which can be mitigated by adjusting rf amplitudes and electrode dimensions. Using SIMION trajectories and statistical arguments, the effective temperatures of ions in an rf-confining drift cell are evaluated. Results for the doubly charged peptide GRGDS suggest that applied rf potentials can result in a subtle increase (2 K) in effective temperature compared to an electrostatic drift tube. Additionally, simulations of native-like ions of the protein complex avidin suggest that rf potentials have a negligible effect on the effective temperature of these ions. In general, the results of this study suggest that applied rf potentials enable the measurement of drift times at extremely low E/P and that these potentials have negligible effects on ion effective temperature.
You must be logged in to post a comment.